@raalkivictorieux, Master Ra’al Ki Victorieux

Delve into the timeless allure of Platonic solids, symbolizing the universe’s building blocks and their profound impact on culture, spirituality, and science. #SacredGeometry #PlatonicSolids https://wp.me/p3JLEZ-4tu

Embarking on a journey through the captivating realm of sacred geometry and the profound significance of the Platonic solids is an invitation to explore the fundamental principles that underpin not only our understanding of the universe, but also our cultural, spiritual, and scientific experiences. Delve into the timeless allure of these symbolic shapes as they reveal an intricate tapestry of interconnectedness between the physical and metaphysical realms. Join in the exploration of their mystique, where the study of mathematics, spirituality, and natural phenomena converge to offer a richer comprehension of the world around us.

Sacred Geometry

Sacred geometry ascribes symbolic and sacred meanings to certain geometric shapes and certain geometric proportions. It is associated with the belief of a divine creator of the universal geometer. The geometry used in the design and construction of religious structures such as churches, temples, mosques, religious monuments, altars, and tabernacles has sometimes been considered sacred. The concept applies also to sacred spaces such as temenoi, sacred groves, village greens, pagodas and holy wells, Mandala Gardens and the creation of religious and spiritual art.

One well known form in sacred geometry is the platonic symbol.

The Platonic Solids Symbol

The Platonic solids symbol represents a set of five geometric shapes: the tetrahedron, hexahedron (cube), octahedron, dodecahedron, and icosahedron. These shapes are considered to be the building blocks of the universe, with each solid having identical faces, angles, and edges. In sacred geometry, the platonic solids are believed to hold significant meaning, symbolizing the fundamental elements and patterns in the fabric of existence.

Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the Timaeus, that the classical elements were made of these regular solids.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: tetrahedron (pyramid, four faces), hexahedron (cube, 6 faces), octahedron (eight faces), dodecahedron (twelve faces), and icosahedron (twenty faces).

A convex polyhedron is a Platonic solid if and only if all three of the following requirements are met:

  • All of its faces are congruent convex regular polygons.
  • None of its faces intersect except at their edges.
  • The same number of faces meet at each of its vertices.

Each Platonic solid can therefore be assigned a pair {p, q} of integers, where p is the number of edges (or, equivalently, vertices) of each face, and q is the number of faces (or, equivalently, edges) that meet at each vertex. This pair {p, q}, called the Schläfli symbol, gives a combinatorial description of the polyhedron. The Schläfli symbol is tetrahedron {3, 3}, hexahedron {4, 3}, octahedron {3, 4}, dodecahedron {5, 3}, and icosahedron {3, 5}.

Orthographic projections and Schlegel diagrams with Hamiltonian cycles of the vertices of the five platonic solids – only the octahedron has an Eulerian path or cycle, by extending its path with the dotted one

History

The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices of the dodecahedron, and the arrangement of the knobs was not always symmetric.

The ancient Greeks studied the Platonic solids extensively. Some sources (such as Proclus) credit Pythagoras with their discovery. Other evidence suggests that he may have only been familiar with the tetrahedron, cube, and dodecahedron and that the discovery of the octahedron and icosahedron belong to Theaetetus, a contemporary of Plato. In any case, Theaetetus gave a mathematical description of all five and may have been responsible for the first known proof that no other convex regular polyhedra exist.

The Platonic solids are prominent in the philosophy of Plato, their namesake. Plato wrote about them in the dialogue Timaeus c. 360 B.C. in which he associated each of the four classical elements (earth, air, water, and fire) with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, and fire with the tetrahedron.

Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarked, “…the god used [it] for arranging the constellations on the whole heaven”. Aristotle added a fifth element, aither (aether in Latin, “ether” in English) and postulated that the heavens were made of this element, but he had no interest in matching it with Plato’s fifth solid.

Euclid completely mathematically described the Platonic solids in the Elements, the last book (Book XIII) of which is devoted to their properties. Propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the circumscribed sphere to the edge length. In Proposition 18 he argues that there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the five regular solids is the chief goal of the deductive system canonized in the Elements. Much of the information in Book XIII is probably derived from the work of Theaetetus.

In the 16th century, the German astronomer Johannes Kepler attempted to relate the five extraterrestrial planets known at that time to the five Platonic solids. In Mysterium Cosmographicum, published in 1596, Kepler proposed a model of the Solar System in which the five solids were set inside one another and separated by a series of inscribed and circumscribed spheres. Kepler proposed that the distance relationships between the six planets known at that time could be understood in terms of the five Platonic solids enclosed within a sphere that represented the orbit of Saturn. The six spheres each corresponded to one of the planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn). The solids were ordered with the innermost being the octahedron, followed by the icosahedron, dodecahedron, tetrahedron, and finally the cube, thereby dictating the structure of the solar system and the distance relationships between the planets by the Platonic solids. In the end, Kepler’s original idea had to be abandoned, but out of his research came his three laws of orbital dynamics, the first of which was that the orbits of planets are ellipses rather than circles, changing the course of physics and astronomy. He also discovered the Kepler solids, which are two nonconvex regular polyhedra.

Symmetry

Dual polyhedra

Every polyhedron has a dual (or “polar”) polyhedron with faces and vertices interchanged. The dual of every Platonic solid is another Platonic solid, so that we can arrange the five solids into dual pairs.

  • The tetrahedron is self-dual (i.e. its dual is another tetrahedron).
  • The cube and the octahedron form a dual pair.
  • The dodecahedron and the icosahedron form a dual pair.

If a polyhedron has Schläfli symbol {p, q}, then its dual has the symbol {q, p}. Indeed, every combinatorial property of one Platonic solid can be interpreted as another combinatorial property of the dual.

One can construct the dual polyhedron by taking the vertices of the dual to be the centers of the faces of the original figure. Connecting the centers of adjacent faces in the original forms the edges of the dual and thereby interchanges the number of faces and vertices while maintaining the number of edges.

More generally, one can dualize a Platonic solid with respect to a sphere of radius d concentric with the solid. The radii (R, ρ, r) of a solid and those of its dual (R, ρ, r*).
Dualizing with respect to the midsphere (d = ρ) is often convenient because the midsphere has the same relationship to both polyhedra. Taking d2 = Rr yields a dual solid with the same circumradius and inradius (i.e. R* = R and r* = r).

Symmetry groups

In mathematics, the concept of symmetry is studied with the notion of a mathematical group. Every polyhedron has an associated symmetry group, which is the set of all transformations (Euclidean isometries) which leave the polyhedron invariant. The order of the symmetry group is the number of symmetries of the polyhedron. One often distinguishes between the full symmetry group, which includes reflections, and the proper symmetry group, which includes only rotations.

The symmetry groups of the Platonic solids are a special class of three-dimensional point groups known as polyhedral groups. The high degree of symmetry of the Platonic solids can be interpreted in a number of ways. Most importantly, the vertices of each solid are all equivalent under the action of the symmetry group, as are the edges and faces. One says the action of the symmetry group is transitive on the vertices, edges, and faces. In fact, this is another way of defining regularity of a polyhedron: a polyhedron is regular if and only if it is vertex-uniform, edge-uniform, and face-uniform.

There are only three symmetry groups associated with the Platonic solids rather than five, since the symmetry group of any polyhedron coincides with that of its dual. This is easily seen by examining the construction of the dual polyhedron. Any symmetry of the original must be a symmetry of the dual and vice versa. The three polyhedral groups are:

  • the tetrahedral group T,
  • the octahedral group O (which is also the symmetry group of the cube), and
  • the icosahedral group I (which is also the symmetry group of the dodecahedron).

The orders of the proper (rotation) groups are 12, 24, and 60 respectively – precisely twice the number of edges in the respective polyhedra. The orders of the full symmetry groups are twice as much again (24, 48, and 120). See (Coxeter 1973) for a derivation of these facts. All Platonic solids except the tetrahedron are centrally symmetric, meaning they are preserved under reflection through the origin.

Wythoff’s kaleidoscope construction is a method for constructing polyhedra directly from their symmetry groups.

In nature and technology

The tetrahedron, cube, and octahedron all occur naturally in crystal structures. These by no means exhaust the numbers of possible forms of crystals. However, neither the regular icosahedron nor the regular dodecahedron are amongst them. One of the forms, called the pyritohedron (named for the group of minerals of which it is typical) has twelve pentagonal faces, arranged in the same pattern as the faces of the regular dodecahedron. The faces of the pyritohedron are, however, not regular, so the pyritohedron is also not regular. Allotropes of boron and many boron compounds, such as boron carbide, include discrete B12 icosahedra within their crystal structures. Carborane acids also have molecular structures approximating regular icosahedra

In the early 20th century, Ernst Haeckel described (Haeckel, 1904) a number of species of Radiolaria, some of whose skeletons are shaped like various regular polyhedra. Examples include Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus and Circorrhegma dodecahedra. The shapes of these creatures should be obvious from their names.

Many viruses, such as the herpes[11] virus, have the shape of a regular icosahedron. Viral structures are built of repeated identical protein subunits and the icosahedron is the easiest shape to assemble using these subunits. A regular polyhedron is used because it can be built from a single basic unit protein used over and over again; this saves space in the viral genome.

In meteorology and climatology, global numerical models of atmospheric flow are of increasing interest which employ geodesic grids that are based on an icosahedron (refined by triangulation) instead of the more commonly used longitude/latitude grid. This has the advantage of evenly distributed spatial resolution without singularities (i.e. the poles) at the expense of somewhat greater numerical difficulty.

Geometry of space frames is often based on platonic solids. In the MERO system, Platonic solids are used for naming convention of various space frame configurations.

Several Platonic hydrocarbons have been synthesised, including cubane and dodecahedrane and not tetrahedrane.

Platonic solids are often used to make dice, because dice of these shapes can be made fair. 6-sided dice are very common, but the other numbers are commonly used in role-playing games. Such dice are commonly referred to as dn where n is the number of faces (d8, d20, etc.)

These shapes frequently show up in other games or puzzles. Puzzles similar to a Rubik’s Cube come in all five shapes.

Liquid crystals with symmetries of Platonic solids

For the intermediate material phase called liquid crystals, the existence of such symmetries was first proposed in 1981 by H. Kleinert and K. Maki. In aluminum the icosahedral structure was discovered three years after this by Dan Shechtman, which earned him the Nobel Prize in Chemistry in 2011.

Related polyhedra and polytopes

Uniform polyhedra

There exist four regular polyhedra that are not convex, called Kepler–Poinsot polyhedra. These all have icosahedral symmetry and may be obtained as stellations of the dodecahedron and the icosahedron.

The next most regular convex polyhedra after the Platonic solids are the cuboctahedron, which is a rectification of the cube and the octahedron, and the icosidodecahedron, which is a rectification of the dodecahedron and the icosahedron (the rectification of the self-dual tetrahedron is a regular octahedron). These are both quasi-regular, meaning that they are vertex- and edge-uniform and have regular faces, but the faces are not all congruent (coming in two different classes). They form two of the thirteen Archimedean solids, which are the convex uniform polyhedra with polyhedral symmetry. Their duals, the rhombic dodecahedron and rhombic triacontahedron, are edge- and face-transitive, but their faces are not regular and their vertices come in two types each; they are two of the thirteen Catalan solids.

The uniform polyhedra form a much broader class of polyhedra. These figures are vertex-uniform and have one or more types of regular or star polygons for faces. These include all the polyhedra mentioned above together with an infinite set of prisms, an infinite set of antiprisms, and 53 other non-convex forms.

The Johnson solids are convex polyhedra which have regular faces but are not uniform. Among them are five of the eight convex deltahedra, which have identical, regular faces (all equilateral triangles) but are not uniform. (The other three convex deltahedra are the Platonic tetrahedron, octahedron, and icosahedron.)

Regular tessellations

The three regular tessellations of the plane are closely related to the Platonic solids. Indeed, one can view the Platonic solids as regular tessellations of the sphere. This is done by projecting each solid onto a concentric sphere. The faces project onto regular spherical polygons which exactly cover the sphere. Spherical tilings provide two infinite additional sets of regular tilings, the hosohedra, {2,n} with 2 vertices at the poles, and lune faces, and the dual dihedra, {n,2} with 2 hemispherical faces and regularly spaced vertices on the equator. Such tesselations would be degenerate in true 3D space as polyhedra.

In a similar manner, one can consider regular tessellations of the hyperbolic plane. There is an infinite family of such tessellations.

Higher dimensions

In more than three dimensions, polyhedra generalize to polytopes, with higher-dimensional convex regular polytopes being the equivalents of the three-dimensional Platonic solids.

In the mid-19th century the Swiss mathematician Ludwig Schläfli discovered the four-dimensional analogues of the Platonic solids, called convex regular 4-polytopes. There are exactly six of these figures; five are analogous to the Platonic solids : 5-cell as {3,3,3}, 16-cell as {3,3,4}, 600-cell as {3,3,5}, tesseract as {4,3,3}, and 120-cell as {5,3,3}, and a sixth one, the self-dual 24-cell, {3,4,3}.

In all dimensions higher than four, there are only three convex regular polytopes: the simplex as {3,3,…,3}, the hypercube as {4,3,…,3}, and the cross-polytope as {3,3,…,4}. In three dimensions, these coincide with the tetrahedron as {3,3}, the cube as {4,3}, and the octahedron as {3,4}.

The Platonic Solids Symbol Cleaning effect

You will notice the 2 dimensional representations of the platonic solids around the circle. The platonic solids represent the matrix by which atomic matter is organized. The spiral in the middle represents this spiral galaxy, or the central sun, or what is called Mount Meru in Hindu mythology.

The Platonic Solids Symbol
The Platonic Solids Symbol

This symbol has a cleaning effect. You can print it in a t-shirt, a cushion, or other items of clothing and whites, you can also try putting your feet on one symbol each when you meditate.

Whatever you place into the center of the symbol will be cleared and uplifted. Objects to place unto symbol are: Gems, jewelry, food and drink, sacred objects, statues, and pictures to name a few. If you use gems or cristals for haling, purify them on this symbol after the healing sessions.

You can explore the energy of the object before and after the cleaning, to perceive the difference. You can feel the difference in the energy which becomes light and happy when the clearing is done. The average crystal takes about 5 minutes. Objects made from metal may take up 1/2 hour.

Conclussion

The study of sacred geometry and the Platonic solids reveals a deep connection between the fundamental principles of the universe and the symbolic shapes that embody them. The Platonic solids, comprising the tetrahedron, hexahedron (cube), octahedron, dodecahedron, and icosahedron, are not merely mathematical curiosities, but rather representations of the building blocks of existence. These shapes have been revered for millennia, with their influence extending into various aspects of human culture, spirituality, and science. Found in religious structures, spiritual art, and even in natural phenomena, the Platonic solids hold a significant place in human understanding and exploration of the world around us.

Their unique properties and symmetries have also inspired advancements in mathematics, crystallography, and even the understanding of molecular structures in chemistry and biology. Furthermore, the symbolic significance of the Platonic solids, as highlighted in various cultural and spiritual contexts, reinforces their timeless appeal and enduring relevance. The discovery and exploration of the Platonic solids continue to unveil new insights about the nature of reality, from the macroscopic to the microscopic, showcasing the profound interconnectedness between geometry, spirituality, and the cosmos.

Utilizing the Platonic solids symbol as a means of cleansing and uplifting objects adds another layer to their mystique, offering a tangible way to experience the purported purifying power they embody. Whether through meditation or energetic exploration, the enduring allure of the Platonic solids symbolizes a bridge between the physical and metaphysical realms, inviting individuals to delve deeper into their enigmatic influence.

Your engagement means a lot to us, so please feel free to like, comment, and share your thoughts. For more engaging content on art, personal development, and social justice, visit Atma Unum. If you’ve enjoyed this article, consider supporting our work by exploring our books on Amazon Kindle. Your support is greatly appreciated!

Leave a Reply

Your email address will not be published. Required fields are marked *

Trending